Caloric restriction improves glycaemic control without reducing plasma branched-chain amino acids or keto-acids in obese men

  • Kelly, T., Yang, W., Chen, C. S., Reynolds, K. & He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 32(9), 1431–1437 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Shaw, J. E., Sicree, R. A. & Zimmet, P. Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87, 4–14 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Q. et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care 43(7), 1392–1398 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynch, C. J. & Adams, S. H. Banched-chain amino acids in metabolic signalling and Insulin resistance. Nat. Rev. Endocrinol. 10(12), 723–736 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17(4), 448–453 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biswas, D. et al. Branched-chain ketoacid overload inhibits insulin action in the muscle. J. Biol. Chem. 295(46), 15597–15621. https://doi.org/10.1074/jbc.RA120.013121 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tricò, D. et al. Elevated a-hydroxybutyrate and branched-chain amino acid levels predict deterioration of glycemic control in adolescents. J. Clin. Endocrinol. Metab. 102(7), 2473–2481 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, P. J. et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol. Metab. 5(7), 538–551. https://doi.org/10.1016/j.molmet.2016.04.006 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, P. J. et al. The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase. Cell Metab. 27(6), 1281–1293. https://doi.org/10.1016/j.cmet.2018.04.015 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felig, P., Marliss, E. & Cahill, G. F. Plasma amino acid levels and insulin secretion in obesity. N. Engl. J. Med. 1(9), 39–42 (1969).


    Google Scholar
     

  • Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9(4), 311–326. https://doi.org/10.1016/j.cmet.2009.02.002 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tobias, D. K. et al. Fasting status and metabolic health in relation to plasma branched chain amino acid concentrations in women. Metabolism 117, 154391. https://doi.org/10.1016/j.metabol.2020.154391 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newgard, C. B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15(5), 606–614. https://doi.org/10.1016/j.cmet.2012.01.024 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kubacka, J., Cembrowska, P., Sypniewska, G. & Stefanska, A. The association between branched-chain amino acids (Bcaas) and cardiometabolic risk factors in middle-aged caucasian women stratified according to glycemic status. Nutrients 13(10), 3307 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilkinson, D. J. et al. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J. Physiol. 591(11), 2911–2923 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernández-Alvarez, M. I. et al. Early-onset and classical forms of type 2 diabetes show impaired expression of genes involved in muscle branched-chain amino acids metabolism. Sci. Rep. 7(1), 1–12 (2017).

    Article 

    Google Scholar
     

  • David, J., Dardevet, D., Mosoni, L., Savary-Auzeloux, I. & Polakof, S. Impaired skeletal muscle branched-chain amino acids catabolism contributes to their increased circulating levels in a non-obese insulin-resistant fructose-fed rat model. Nutrients 11(2), 1–13 (2019).

    Article 

    Google Scholar
     

  • Crossland, H. et al. Exploring mechanistic links between extracellular branched-chain amino acids and muscle insulin resistance: An in vitro approach. Am. J. Physiol. Cell Physiol. 319(6), C1151–C1157 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, E. L., Lim, K., Hollingsworth, K. G. & Aribisala, B. S. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54, 2506–2514 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lean, M. E. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet 391(10120), 541–551. https://doi.org/10.1016/S0140-6736(17)33102-1 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hong, K., Li, Z., Wang, H. J., Elashoff, R. & Heber, D. Analysis of weight loss outcomes using VLCD in black and white overweight and obese women with and without metabolic syndrome. Int. J. Obes. 29(4), 436–442 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Willi, S. M., Martin, K., Datko, F. M. & Brant, B. P. Treatment of type 2 diabetes in childhood using a very-low-calorie diet. Diabetes Care 27(2), 348–353 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Phillips, B., Williams, J. P., Greenhaff, P. L., Smith, K. & Atherton, P. J. Physiological adaptations to resistance exercise as a function of age. JCI Insight 2(17), 1–16 (2017).

    Article 

    Google Scholar
     

  • Muscogiuri, G. et al. The management of very low-calorie ketogenic diet in obesity outpatient clinic: A practical guide. J. Transl. Med. 17(1), 1–9. https://doi.org/10.1186/s12967-019-2104-z (2019).

    Article 

    Google Scholar
     

  • Goday, A. et al. Short-Term safety, tolerability and efficacy of a very low-calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus. Nutr. Diabetes 6(9), e230 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colleluori, G. et al. Aerobic plus resistance exercise in obese older adults improves muscle protein synthesis and preserves myocellular quality despite weight loss. Cell Metab. 30(2), 261-273.e6 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • La Vignera, S. et al. The ketogenic diet corrects metabolic hypogonadism and preserves pancreatic ß-cell function in overweight/obese men: A single-arm uncontrolled study. Endocrine https://doi.org/10.1007/s12020-020-02518-8 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddik, M. A. B. & Shin, A. C. Recent progress on branched-chain amino acids in obesity, diabetes, and beyond. Endocrinol. Metab. 34(3), 234–246 (2019).

    Article 

    Google Scholar
     

  • Le Couteur, D. G. et al. Branched chain amino acids, cardiometabolic risk factors and outcomes in older men: The concord health and ageing in men project. J. Gerontol. Ser. A 75(10), 1–6 (2019).


    Google Scholar
     

  • Pietiläinen, K. H. et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: Pathways behind acquired obesity. PLoS Med. 5(3), 0472–0483 (2008).

    Article 

    Google Scholar
     

  • Shah, S. H. et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 55(2), 321–330 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tai, E. S. et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 53(4), 757–767 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mihalik, S. J. et al. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: Evidence for enhanced mitochondrial oxidation. Diabetes Care 35(3), 605–611 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menni, C. et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 62(12), 4270–4276 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lips, M. A. et al. Roux-en-Y gastric bypass surgery, but not calorie restriction, reduces plasma branched-chain amino acids in obese women independent of weight loss or the presence of type 2 diabetes. Diabetes Care 37(12), 3150–3156 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laferrère, B. et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93(7), 2479–2485 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magkos, F. et al. Effect of roux-en-y gastric bypass and laparoscopic adjustable gastric banding on branched-chain amino acid metabolism. Diabetes 62(8), 2757–2761 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • She, P., Reid, T., Huston, S., Cooney, R. & Lynch, C. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched chain amino acid (BCAA) metabolism. Am. J. Physiol. Endocrinol. Metab. 293(1), 1–7 (2007).


    Google Scholar
     

  • Steenackers, N., Gesquiere, I. & Matthys, C. The relevance of dietary protein after bariatric surgery: What do we know?. Curr. Opin. Clin. Nutr. Metab. Care 21(1), 58–63 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira Nicoletti, C. et al. Protein and amino acid status before and after bariatric surgery: A 12-month follow-up study. Surg. Obes. Relat. Dis. 9(6), 1008–1012. https://doi.org/10.1016/j.soard.2013.07.004 (2013).

    Article 

    Google Scholar
     

  • Elshorbagy, A. K. et al. Food overconsumption in healthy adults triggers early and sustained increases in serum branched-chain amino acids and changes in cysteine linked to fat gain. J. Nutr. 148(7), 1073–1080 (2018).

    PubMed 

    Google Scholar
     

  • Jang, C. et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22(4), 421–426 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayda, M. H. et al. Associations between plasma branched chain amino acids and health biomarkers in response to resistance exercise training across age. Nutrients 12(10), 3029 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • She, P. et al. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab. 6(3), 181–194 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q., Holmes, M. V., Smith, G. D. & Ala-Korpela, M. Genetic support for a causal role of insulin resistance on circulating branched-chain amino acids and inflammation. Diabetes Care 40(12), 1779–1786 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammer, S. et al. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J. Am. Coll. Cardiol. 52(12), 1006–1012 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heiskanen, M. A. et al. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: A randomised controlled trial. Diabetologia 61(8), 1817–1828 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keating, S. E., Hackett, D. A., George, J. & Johnson, N. A. Exercise and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Hepatol. 57(1), 157–166. https://doi.org/10.1016/j.jhep.2012.02.023 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *