Effect of duodenal-jejunal bypass on diabetes in the early postoperative period

  • DeFronzo, R. A. Pathogenesis of type 2 diabetes mellitus. Med. Clin. N. Am. 88, 787–835 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Tripathi, B. K. & Srivastava, A. K. Diabetes mellitus: Complications and therapeutics. Med Sci Monit. 12, RA130–RA147 (2006).

    CAS 

    Google Scholar
     

  • Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053 (2004).

    Article 

    Google Scholar
     

  • Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 157, 107843 (2019).

    Article 

    Google Scholar
     

  • Cefalu, W. T., Rubino, F. & Cummings, D. E. Metabolic surgery for type 2 diabetes: Changing the landscape of diabetes Care. Diabetes Care 39, 857–860 (2016).

    Article 

    Google Scholar
     

  • Rubino, F. & Cummings, D. E. Surgery: The coming of age of metabolic surgery. Nat. Rev. Endocrinol. 8, 702–704 (2012).

    Article 

    Google Scholar
     

  • Rubino, F. & Marescaux, J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: A new perspective for an old disease. Ann. Surg. 239, 1–11 (2004).

    Article 

    Google Scholar
     

  • Guan, W. et al. Duodenal-jejunal exclusion surgery improves type 2 diabetes in a rat model through regulation of early glucose metabolism. Can. J. Diabetes. 44, 401-406.e1 (2020).

    Article 

    Google Scholar
     

  • Dolo, P. R. et al. Preserving duodenal-jejunal (foregut) transit does not impair glucose tolerance and diabetes remission following gastric bypass in type 2 diabetes Sprague Dawley rat model. Obes. Surg. 28, 1313–1320 (2018).

    Article 

    Google Scholar
     

  • Kashihara, H. et al. Duodenal-jejunal bypass improves insulin resistance by enhanced glucagon-like peptide-1 secretion through increase of bile acids. Hepatogastroenterology. 61, 1049–1054 (2014).


    Google Scholar
     

  • Seki, Y., Kasama, K., Umezawa, A. & Kurokawa, Y. Laparoscopic sleeve gastrectomy with duodenojejunal bypass for type 2 diabetes mellitus. Obes. Surg. 26, 2035–2044 (2016).

    Article 

    Google Scholar
     

  • Cavin, J.-B. et al. Differences in alimentary glucose absorption and intestinal disposal of blood glucose following Roux-en-Y gastric bypass vs sleeve gastrectomy. Gastroenterology 150, 454-464.e9 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Saeidi, N. et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science 341, 406–410 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Mumphrey, M. B., Hao, Z., Townsend, R. L., Patterson, L. M. & Berthoud, H.-R. Sleeve gastrectomy does not cause hypertrophy and reprogramming of intestinal glucose metabolism in rats. Obes. Surg. 25, 1468–1473 (2015).

    Article 

    Google Scholar
     

  • Hansen, C. F. et al. Hypertrophy dependent doubling of L-cells in Roux-en-Y gastric bypass operated rats. PLoS ONE 8, e65696 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kellett, G. L. The facilitated component of intestinal glucose absorption. J. Physiol. 531, 585–595 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Kellett, G. L. & Brot-Laroche, E. Apical GLUT2: A major pathway of intestinal sugar absorption. Diabetes 54, 3056–3062 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Koepsell, H. Glucose transporters in the small intestine in health and disease. Pflugers Arch. 472, 1207–1248 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wright, E. M., Loo, D. D. F. & Hirayama, B. A. Biology of human sodium glucose transporters. Physiol. Rev. 91, 733–794 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Thorens, B. Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes. Am. J. Physiol. 270, G541–G553 (1996).

    CAS 

    Google Scholar
     

  • Courcoulas, A. P. et al. Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus treatment: A randomized clinical trial. JAMA Surg. 150, 931–940 (2015).

    Article 

    Google Scholar
     

  • Cummings, D. E. et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia 59, 945–953 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fruhbeck, G. Bariatric and metabolic surgery: A shift in eligibility and success criteria. Nat. Rev. Endocrinol. 11, 465–477 (2015).

    Article 

    Google Scholar
     

  • Mingrone, G. et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 386, 964–973 (2015).

    Article 

    Google Scholar
     

  • Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N. Engl. J. Med. 376, 641–651 (2017).

    Article 

    Google Scholar
     

  • Schauer, P. R. et al. Effect of laparoscopic Roux-en-Y gastric bypass on type 2 diabetes mellitus. Ann. Surg. 238, 467–484 (2003).

    Article 

    Google Scholar
     

  • Fried, M. et al. Metabolic surgery for the treatment of type 2 diabetes in patients with BMI < 35 kg/m2: An integrative review of early studies. Obes. Surg. 20, 776–790 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Laferrère, B. Do we really know why diabetes remits after gastric bypass surgery?. Endocrine 40, 162–167 (2011).

    Article 

    Google Scholar
     

  • Cummings, D. E. Metabolic surgery for type 2 diabetes. Nat. Med. 18, 656–658 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Bradley, D. et al. Gastric bypass and banding equally improve insulin sensitivity and β cell function. J. Clin. Investig. 122, 4667–4674 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Han, H. et al. Expedited biliopancreatic juice flow to the distal gut benefits the diabetes control after duodenal-jejunal bypass. Obes. Surg. 25, 1802–1809 (2015).

    Article 

    Google Scholar
     

  • Breen, D. M. et al. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat. Med. 18, 950–955 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Taqi, E. et al. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model. J. Pediatr. Surg. 45, 987–995 (2010).

    Article 

    Google Scholar
     

  • Bueter, M. et al. Gastric bypass increases energy expenditure in rats. Gastroenterology 138, 1845–1853 (2010).

    Article 

    Google Scholar
     

  • Kwon, I. G. et al. Serum glucose excretion after Roux-en-Y gastric bypass: A potential target for diabetes treatment. Gut 70, 1847–1856 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sanaksenaho, G. et al. Parenteral nutrition-dependent children with short-bowel syndrome lack duodenal-adaptive hyperplasia but show molecular signs of altered mucosal function. JPEN J. Parenter. Enteral. Nutr. 44, 1291–1300 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, B. et al. Role of proximal intestinal glucose sensing and metabolism in the blood glucose control in type 2 diabetic rats after duodenal jejunal bypass surgery. Obes. Surg. 32(4), 1119–1129 (2022).

    Article 

    Google Scholar
     

  • Tack, J., Arts, J., Caenepeel, P., Wulf, D. D. & Bisschops, R. Pathophysiology, diagnosis and management of postoperative dumping syndrome. Nat. Rev. Gastroenterol. Hepatol. 6, 583–590 (2009).

    Article 

    Google Scholar
     

  • Tack, J. & Deloose, E. Complications of bariatric surgery: Dumping syndrome, reflux and vitamin deficiencies. Best Pract. Res. Clin. Gastroenterol. 28, 741–749 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Borgmann, D. et al. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metab. 33, 1466–1482 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, P. Y. et al. Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production. Nature 452, 1012–1016 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Soty, M., Gautier-Stein, A., Rajas, F. & Mithieux, G. Gut–brain glucose signaling in energy homeostasis. Cell Metab. 25, 1231–1242 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Stearns, A. T. et al. Rapid upregulation of sodium-glucose transporter SGLT1 in response to intestinal sweet taste stimulation. Ann. Surg. 251, 865–871 (2010).

    Article 

    Google Scholar
     

  • Stearns, A. T., Balakrishnan, A., Rhoads, D. B. & Tavakkolizadeh, A. Rapid upregulation of sodium-glucose transporter SGLT1 in response to intestinal sweet taste stimulation. Ann. Surg. 251, 865–871 (2010).

    Article 

    Google Scholar
     

  • Stearns, A. T. et al. Capsaicin-sensitive vagal afferents modulate posttranscriptional regulation of the rat Na+/glucose cotransporter SGLT1. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1078–G1083 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Pyridostigmine regulates glucose metabolism and mitochondrial homeostasis to reduce myocardial vulnerability to injury in diabetic mice. Am. J. Physiol. Endocrinol. Metab. 317, E312–E326 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Simonen, M. et al. Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass. Obes. Surg. 22(9), 1473–1480 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chai, J. et al. Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass. Int. J. Clin. Exp. Pathol. 8(12), 15778–15785 (2015).

    CAS 

    Google Scholar
     

  • Chadt, A. & Al-Hasani, H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 472(9), 1273–1298 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ding, L., Yang, L., Wang, Z. & Huang, W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm. Sin. B. 5(2), 135–144 (2015).

    Article 

    Google Scholar
     

  • Rubino, F. et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann. Surg. 244, 741–749 (2006).

    Article 

    Google Scholar
     

  • Okikawa, S. et al. Inhibition of the VEGF signaling pathway attenuates tumor-associated macrophage activity in liver cancer. Oncol. Rep. 47, 71 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Otani, T. et al. Non-invasive monitoring of cisplatin and erlotinib efficacy against lung cancer in orthotopic SCID mouse models by small animal FDG-PET/CT and CT. Oncol. Rep. 41, 447–454 (2019).

    CAS 

    Google Scholar
     

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *